1. Liu J, Ren ZH, Qiang H, Wu J, Shen M, Zhang L, et al. Trends in the incidence of diabetes mellitus: results from the Global Burden of Disease Study 2017 and implications for diabetes mellitus prevention. BMC public health. 2020;20:1-2. [
DOI:10.1186/s12889-020-09502-x]
2. Parker ED, Lin J, Mahoney T, Ume N, Yang G, Gabbay RA, et al. Economic costs of diabetes in the US in 2022. Diabetes Care. 2024;47(1):26-43. [
DOI:10.2337/dci23-0085]
3. Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I. Machine learning and data mining methods in diabetes research. Computational and structural biotechnology journal. 2017;15:104-16. [
DOI:10.1016/j.csbj.2016.12.005]
4. Singla R, Singla A, Gupta Y, Kalra S. Artificial intelligence/machine learning in diabetes care. Indian journal of endocrinology and metabolism. 2019;23(4):495-7. [
DOI:10.4103/ijem.IJEM_228_19]
5. Guan Z, Li H, Liu R, Cai C, Liu Y, Li J, et al. Artificial intelligence in diabetes management: advancements, opportunities, and challenges. Cell Reports Medicine. 2023. [
DOI:10.1016/j.xcrm.2023.101213]
6. Heger KA, Waldstein SM. Artificial intelligence in retinal imaging: current status and future prospects. Expert review of medical devices. 2024;21(1-2):73-89. [
DOI:10.1080/17434440.2023.2294364]
7. Ellahham S. Artificial intelligence: the future for diabetes care. The American journal of medicine. 2020;133(8):895-900. [
DOI:10.1016/j.amjmed.2020.03.033]